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License Information for Reinforcement Learning (EE-568)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor’s permission.
> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License
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Learning from demonstrations (LfD)

Motivation: o In RL, the reward function is known and we maximize the cumulative reward.
o The reward functions are often manually designed to define the task.

o Can we instead learn a policy by capitalizing an expert's behavior?

reward
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Learning from demonstrations (LfD) (cont’d)

Real world problems: o The reward function is unknown or is difficult to be designed.

o It is easier/more natural to use “demonstrations” by experts.
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Imitation learning (IL) vs inverse reinforcement learning (IRL)

o Setting:
> Given an expert’s demonstrations {(s;, mg(s;))} (offline trajectories or online queries)
> Reward signal is unobserved

> Transition model may be known or unknown

o Goals and approaches:
> Recover the expert’s policy 7 directly: imitation learning (IL)

> Recover the expert’s latent reward function rire(s, a): inverse reinforcement learning (IRL)
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A historic application
o Inverse reinforcement learning has been formally introduced by [31].
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Figure: One of the first imitation learning systems using neural networks.

o ALVINN: Autonomous Land Vehicle In a Neural Network, 1989 [35].
https://www.youtube. com/watch?v=2KMAAmkz9go&t=205s.
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One of the latest applications

o Large language models: ChatGPT

@' deepsecek % Claude

https://www.stickpng.com/ https://www.stickpng.com/

https://www.forbes.com

o The last training step is based on Reinforcement Learning from Human Feedback (RLHF) (see [33]).

o A recent work [50] shows a close connection between IRL and RLHF.
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More applications

o Simulated highway driving [2]
o Helicopter acrobatics [1]

o Urban navigation [51]

o Human goal inference [27]

o Object manipulation [41, 13] — -
R B bl R

(b)

Figure: Helicopter model and instance of its acrobatics [11].
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Big Picture: Taxonomy of learning from demonstration methods

Method Reward Access to Interactive Pre-collected
learning | environment | demonstrations | demonstrations
Behavioural Cloning NO NO NO
Online IL NO MAYBE
Inverse RL NO
Adversarial IL MAYBE NO
Non-adversarial IL MAYBE NO

Remarks: o BC avoids interaction with the environment, but can suffer from cascading errors.
o Online IL helps with the cascading errors but requires (expensive) expert queries.
o IRL explains the expert’s behavior but has poor sample complexity and scalability.
o Adversarial IL avoids solving RL repeatedly but is unstable due to adversarial training.

o Non-adversarial IL enjoys stable performance but has limited theoretical understanding.
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Offline imitation learning: Behavioral cloning
o We assume there is an expert that has the optimal policy 7.

o Input: offline data from expert’s demonstration D = {(s;,a;)}}, where a; ~ mg(s;).
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Offline imitation learning: Behavioral cloning
o We assume there is an expert that has the optimal policy 7.
o Input: offline data from expert’s demonstration D = {(s;,a;)}},, where a; ~ mg(s;).

o ldea: Directly learn the expert’'s policy via supervised learning.

Expert Trajectories Dataset Supervised Learning
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Figure: Source: https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
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Behavioral cloning

Maximum Likelihood Estimation (MLE)

The maximum likelihood estimator for the policy can be written as follows:

AMLE = argmax oy Z log 7(als). (1)
(s,a)eD

Risk Minimization [4]

Alternatively, we can try to minimize a loss between our parameterized policy g and the expert policy 7g as

min B, yre 1 [€(moC19) 7e(19) . @

where AzE is the state visitation distribution under policy g and £ is a loss function. Typically, the loss function
is the relative entropy.
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Theoretical guarantees of BC

Theorem (Behavior Cloning) [4]
Let IT be a discrete and realizable policy class, i.e., g € II. With probability at least 1 — §, the MLE behavioral
cloning returns a policy that obeys the following guarantee on the reward J:

1 log (|11 /6>>
(1-7)? D ’

{p VTE) = (p, VTMIE) = (u, VTE — VTME) < O <
e - —
J(7E) J(FmLE)

where |II] is the size of the policy class, and |D] is the length of the provided dataset.
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Theoretical guarantees of BC

Theorem (Behavior Cloning) [4]

Let IT be a discrete and realizable policy class, i.e., g € II. With probability at least 1 — §, the MLE behavioral
cloning returns a policy that obeys the following guarantee on the reward J:

i A 1 1 II| /6
(u, VTEY — (, VTMLE) — (1 V™E — VTMLE) < O . og (|11} /9) ’
N R () D
J(7E) J(7MmLE)

where |II] is the size of the policy class, and |D] is the length of the provided dataset.

Remarks: o BC only ensures the learned policy 7we is close to 7g under the support of distribution )\ZE.

o The term

% reflects the error 7iye and 7g under the distribution )\ZE.

o The term ﬁ reflects the cascading errors when performing with respect to the policy 7mie.

o The bound improves to O <<1iﬂ/) w> in the finite horizon [14].

o The term —LX—; can be improved to —— when the transition model is known [4].
(1=) 1—v
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Behavioral cloning: Advantages and disadvantages

o Advantages
o Simple.
o Effective. For example in ALVINN [35].
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Behavioral cloning: Advantages and disadvantages

o Advantages
o Simple.
o Effective. For example in ALVINN [35].

o Disadvantages
o No long-term planning.
o Cascading errors.

o Possible mismatch between training and testing distributions.
Quote from Pomerleau [39]

When driving for itself, the network (ALVINN) may occasionally stray from the center of road and so must be
prepared to recover by steering the vehicle back to the center of the road.
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A key difference with supervised learning

o The dataset D is collected according to 7g, therefore behavioural cloning outputs the policy with parameters

argmuin B, ze [¢(ma(-}o), me(19)]

o However when we act in the environment with 7y the states are sampled accordingly to A\™¢.

o Hence, ideally we would like to minimize
mmin By mo [¢(ma(-1o) me(19))|.

o Scenario different from supervised learning where the classification decisions do not affect the data distribution.
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Another variation along the theme: Behavioral cloning and interactive IL

o Behavioral cloning (BC) is a supervised learning approach to learning from demonstrations
> Given an expert’s demonstrations {(s;, mg(s;))} (offline trajectories or online queries)
> Fixaloss: £L: A—R

> Output 7* € argmin Zi\] L(a;,m(s;)) with a;, s; in the dataset provided by the expert.

Expert trajectory

Learned Policy
o BC can result in cascading errors @

No data on

> Any error at a state can accumulate over an episode. how to recover

> It can have catastrophic consequences...

o Solution: Interactive IL allows to query the expert policy from a particular state

Figure: https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
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Interactive imitation learning

o Aims to mitigate the cascading errors through interacting with the expert.
o We assume that we can query the expert 7g at any time and any state sampled from )\29.

o ldea: Learn the expert's policy via online learning.

Collect Data
Execute Policy Dataset

/ State Action

Update Policy

Figure: https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
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Interactive imitation learning

o Dataset Aggregation (DAgger) [38]: iteratively build up a policy via supervised learning on aggregated data.

o Policy Aggregation (e.g., SMILe [39]): iteratively build up a policy by mixing newly trained policies.
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Interactive imitation learning

o Dataset Aggregation (DAgger) [38]: iteratively build up a policy via supervised learning on aggregated data.

o Policy Aggregation (e.g., SMILe [39]): iteratively build up a policy by mixing newly trained policies.

Interactive imitation learning

Initialize 7o
for each iteration t = 1,...,T do
Generate trajectories 7 following ¢
Collect new data Dy = {(s, me(s))|s € 7} based on expert’s feedback
Data Aggregation: run behavioral cloning with D = D; UD; U --- U D¢ and obtain ¢
Policy Aggregation: run behavioral cloning with D; and obtain #¢, set ¢ = B7: + (1 — B)me—1

end for

Remark: o In the dataset D; the states are sampled according to A\™t.

o However, the actions are sampled from mg. We need to assume that the expert is interactive.
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Reduction to no-regret online learning
o Classical online optimization framework [52, 19, 10].

o Repeated game between the learner/player and the environment/adversary for any round ¢t =1,...,T.

Online learning protocol
o The learner picks a decision x; € X;
o The adversary picks a loss ¢:(:) : X — R

o The learner suffers from the loss ¢¢(x¢) and observes some information about ¢¢

o The goal is to minimize the player’s regret against the best decision in hindsight:

T T
Rr = Z Le(xt) — )I(Iél)lé Zet(x)-
t=1 t=1

o Follow-the-Leader Algorithm (FTL) [3]:

T
Xt = argminZZi(x),t =1,...,T
xeX i—1
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The reduction

T T
2 vrE=vTy =37 B (@) Tl - m(s)] (PDL)

| /\

maXs,a ‘Q 5 a I ZESNXﬂ-t ||7TE | )*ﬂ't("s)“ﬂ
_ e Q74,0 E(s a)| Z( wore[ImeC1s) = mCls)ll] = Y llmeCls) —”t“s)”ﬂ)

SEDy
maxs,q |Q (s,a)l _
4 MaXsally 715, @) E § IRACBEEAGDIN

t=1 s€D¢

= Amaxs,al\(:?’:(s,aﬂ (o( VT) +R(T)>

o The last inequality follows from the regret definition with losses £ (m) = ZseDf lme(-|s) — me(-|s)|1]-
o Dagger controls the regret via FTL, Smile uses an online version of conditional gradient. [19]

o The O(V/T) follows from Azuma-Hoeffding inequality.
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Optimization perspective: DAgger
o DAgger is equivalent to Follow-the-Leader, which ensures no regret o(T') for strongly convex loss [42].
Optimization perspective on DAgger

Let ¢ (m, D¢) denote the behavioral cloning loss on data D;. At round ¢, DAgger minimizes the loss

T
T¢ = arg min E Li(m, Dy).
TEA £ 1
i=

o DAgger improves the error inflation factor from O (ﬁ) to O (%:E(S’u)‘) [4].

——DAgger @ = (=1
--SMiLe (a=0.1)
Supervised

° Numberof Training Data = 10
Figure: 3D racing car [38]

ICLHE]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 49



Imitation learning from reward features only

o All the methods seen so far require observing the expert actions.
o In practice only features might be observed.
Examples: o Learning to drive from a video showing the car movements but not the driver's actions.

o Learning to cook from videos [15].

cook shrimp

Figure: Robot learning to cook from videos.

o Next, we presents IL methods that work observing only features in which the reward function is linear.

o In practice, features are for example, the video frames.
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Feature expectation matching

o Given some features ¢ : S X A — R, we define the feature expectation for 7 as py(m) := E(s,0)~aT [@(s,a)].

o Note that HP¢(7|'E) - p¢(7r)H2 upper bounds the suboptimality of the policy 7.
1

(1 VTE = V) < 37— (w7 po(me) = w T po(m) < ﬁanQHpqﬁ(w)fpd,(mHQ.

o Therefore, solving the following problem suffices to obtain an error inflated at most by (1 —~)~!:
2

min [|pg(m) = po (me) |, - 3)
Apprenticeship learning formalism

Assume that rtye € R. Apprenticeship learning can be captured by the following problem template:

n;in T JIr(mg) — Jr () = Hirin rrnea%()\::E — AL, T (4)

Remark: o When R = {ijl wid; | ||lwl|ly < 1} the minimax problem (4) is reduced to (3).

o max,er (A — Al , ) is a distance and is an integral probability metric [30] between A7} and AE.

o Different choices of R lead to different R-distances.
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Maximum entropy inverse reinforcement learning [Ziebart et al, 2008 [51]]

o Consider the constrained optimization for feature expectation matching:

Max-Ent IRL

Let A]] be the state-action occupancy measure of policy . Consider the following problem:

: T
I‘IEI] 1;163‘12[( w (E(s,a)w)\l’: [d)(sv a)} - E(s,a)NAZE [¢(57 a)]) + aE(s,a)N)\ﬁ [_ IOgﬂ—(alS)}'

Remark: o Game-theoretic perspective: zero-sum game between the reward and the policy.

o Adding a strongly convex term in the primal is a technique known as “smoothing” in optimization.
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Solving the saddle point problem

o Let f(w) = MaXxell w’ (ES,GNAZ: [¢(57 a’)] - ES’GNAZE [4)(37 a)]) + O‘Es,a&/)\ﬂ [_ IOgﬂ-(a’ls)]'

o Evaluating f(w) requires solving an RL problem with reward w ' ¢(s,a) — alog w(als).

o Let 7* be the optimal policy for this reward.

o By Danskin's theorem [12], we can compute V, f(w) = (Es,aN,\];* [#(s,a)] — Es,ar\a)\ZE [d)(s,a)}).
o And update the reward weights w by gradient descent.

Remarks: o The RL step in the inner loop is expensive and it requires knowledge of the transition.

Max-Ent IRL Algorithm

Alternatively update
o update w by GD (with fixed 7);

o update 7 by any RL algorithm for the corresponding entropy-regularized MDP (with fixed w)
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Linear programming approach for imitation learning

o In the following, we will develop methods which do not require RL in the loop.
o Recall that MCE-IRL does instead.

o Let R be a class of reward functions.

o The following LP outputs the occupancy measure under the worst case reward in R.

LP for imitation learning

in(X — AZF, 5
max 71}&1;&( o) (5)
st. ETA=~PTA+ (1 —~)u (6)
Remarks: o There are |S| + |S||A| decisions variables.

o There are |S| constraints.
o To avoid the large number of constraints, [26] propose to study the Lagrangian.

o To reduce the number of decision variables, [26] uses linear function approximation.
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The Lagrangian

o Let R be a class of reward functions such that riue € R

o The following LP outputs the occupancy measure under the worst case reward in R.

Saddle point formulation for imitation learning

max min min(A — A5, ) + (V, —ETA+~APTA+ (1 — 7)) ()
A rTER V
Remarks: o Notice that the number of decision variables is |S| + 2|S||.A|.

o Hence, we can parameterize the occupancy measure as Ay = ®0, V;, = Yw and r = CB.
o This parametrization helps reduce the number of decision variables significantly.
o The value parametrization has precedence in earlier RL literature.

o The occupancy measure parameterization is done out of necessity.
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The reduced Lagrangian

o Introducing the linear function approximation we obtain the reduced Lagrangian.

o The number of decision variables is now dim(6) + dim(w) + dim(3).
Saddle Point for imitation learning

maxmin min (®0 — \TE, CB) + (Vw,—E &0 + P ®0 + (1 — 8
eegﬁeMw”wgcx n> CB) + v (1 =) (8)

Remarks: o We can solve the problem applying stochastic mirror prox [24].
o With this approach we get an ¢ optimal policy with O(¢~2) samples.
o The sample complexity is independent of |S| and |.A| due to the parametrization.

o A drawback is that one needs a strong assumption on the feature choice (see [26, 7]).
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The Linear MDP Assumption

Linear MDP [23]

There exist mappings ¢ : S X A —R"™ and g : S — R™ and a vector w € W := {w € R™ : ||w||y < 1} such
that

T(Sv a) = <¢(87 a)v w>
P(sl‘sva) = <¢(S’ a)’ 9(5/)>
that is, in matrix form

r = ow
P=®M

Remarks: o The Linear MDP is a standard setting in RL theory literature.

o It justifies an alternative LP formulation.
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The constraint splitting trick

o P2IL [45] is derived from the primal problem for imitation learning.
o We plug in the (Linear MDP) structure in (Primal IL) (5) and we split the as follows !
max min (A — Azg, Pw)
ACRISIAl wew
st. ETA=(1—y)p+~yMTPTA

0

max min <p - <I>T)\I:E, w>
pEA™ NERSXA weW

st. ETA—AMTp=(1—-7)u
dTA=p

o Now we can apply on the Lagrangian, inexact proximal point updates for A and p.

LA similar trick appeared outside the imitation learning in [29], [28] and [8]
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The algorithm: P2IL

Proximal Point Imitation Learning: P2IL

Initialize g as uniform distribution over A
fork=1,...K do
// Policy evaluation

(wg,0r) ~ argmin Gi(w,0)
wEW,0€0

// Policy improvement

mk(als) x mr—1(als) e Q8 (5,9)

end for

o Gi(w, 0), called logistic Bellman error [8], is the following convex and smooth function:

G (w, 10gz (@ A1) (i)e™0® L (1=~ ) (1, VE) = (A, @Tw),

1
ok o=w + MV —0 and VJF2 = log Zwkkfl(a\s)e”‘("?e(s’“) where Qg = D6
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Sample Complexity Guarantees for P2IL

o We consider errors in the maximization of Gy (w, 0), i.e. ex = G (wg,05) — Gr(wi, Ok)-
o First, we show how errors propagate.

o Second, we control that the errors are small using a Biased Stochastic Gradient Ascent subroutine.

Error propagation

Let Tx be the average iterate. Then, with probability at least 1 — &, it holds that

de(aser ne) < 72 (los(mAD +C D" va+ Y a).
k k

Error control

Let (wg, 0)) be the output of the Biased Stochastic Gradient Ascent subroutine for T' iterations. Then,

€x = maxy g G, (w,0) — Gy (wy, O) < O(Ilm};%m) with probability 1 — 4.
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A downside: exploration assumptions

Remarks: o Choosing K = Q(e~ 1) and T = Q(e~*) we obtain O(e~?) sample complexity.

o We use samples to approximate the gradients VoG and V,Gy.
o In REPS, [34] required the following assumption.

Exploration assumption

We can sample state action pairs from an occupancy measure A, (s,a) >0 Vs,a €S x A.
o In our extension to Linear MDP, we require the following assumption.

Positive Definite Covariance Matrix

We can sample state action pairs from an occupancy measure Ar, such that.

Tmin (Bs,amrry $(5,0)B(s,0)T) > 8> 0.

IHET{l  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 49 EPFL



Beyond the exploration assumption with ILARL [46]

o Algorithm obtained using ideas similar to OPPO (Check lecture 5).

Imitation Learning via Adversarial Reinforcement Learning: ILARL

1: Initialize 7o as uniform distribution over A
2. fork=1,... K do
3: // Reward players update

Tk+1 _ H'R, |:,rk +7()\7rE _ )\ﬂ-k):|

4 // Policy players update
5. Find an estimator-uncertainty pair (6%,b*) such that

¥ |<;$(s7 a)To* — PVE(s, a)| < b*(s,a) Vs,a € S x A with high probability.
6: Update @ values
Q"1 (s,a) = " (s,a) +74(s,a)T 0" + b* (s, a).
7. Update policy
1 (als) oc g (als)en@" (9

8: end for

IIHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 49



Guarantees for ILARL [46]

Theorem

~ 5 .
After using O (%) state action pairs from the MDP and using O (%) expert demonstrations
E

ILARL outputs a policy which is at most € + e g-suboptimal, i.e.

E[(u, V™ = V™) <e+ep

Remarks:

o

No RL in the inner loop.

No need to know the transitions.

o

o It bypasses the use of a generative model or the use of exploration assumptions.
o In a linear MDP, when observing only the reward features the lower bound on the number

of state action pairs from the MDP is o (ﬁ .
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IQ-Learn [16]: a recent imitation learning algorithm

o The core idea is to use the expert data to learn a state action value function.

o Goal: Minimizing the suboptimality with respect to an expert occupancy measure under the worst reward
function in a class R, that is

m1n dr (m,7g) = IIllIl mea‘,)z( (pr(TI'E) - pr(ﬂ)) = 1;16113 Irnea%( (Arg — A1),

where pr(7) := (1 —7) (1w, V;T)
o We require rg € R
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The 1Q-Learn optimization problem

o We can see |Q-Learn as a double smoothing approach.

o

We add a strongly convex function occupancy measure dependent function H(:|Ao)

o Analogously, we add a strongly concave function dependent on the reward variable r.

1 1
minmax (A, — A\, 7)) + —9 (1) + —H(A, o),
AEF T X n

A(z,a) Za Arg (2,a)
Arg (z,a) Za Az,a)

4 (1) is restricted to a particular form, i.e. ¥ (r) = (Arpg,r — ¢(r)), with ¢ : RSXA — R being a convex
and non-increasing function.

where H is the relative conditional entropy defined as H(\, \g) := Zz N Az, a)log

(e}
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1Q-Learn equivalent unconstrained problem

IQ-Learn Program over Q-functions
Replacing the optimal policy mg(als) o< exp (Q(s,a)) and let Vo (s) = log ZaEA exp(Q(s,a)), we obtain an

unconstrained problem.

Q= arg(gnaX(l — {1 V) — (e 6 (Q —7PVQ))

Remarks: o The approach is very similar to REPS.

o However, the derivation of the unconstrained problem is not straightforward and requires
assumptions on ).

o The formulation is concave w.r.t. Q.
o The empirical performance of this algorithm is very convincing.
o Lack of convergence guarantees.

o It solves the feature matching problem without employing minmax updates.
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Comparison between 1Q-Learn and P2IL

1.0 10
W
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0 6 9 15 0 3 6 9 12 15 0 3 6 9 12 15
Expert Trajectories Expert Trajectories Expert Trajectories
(a) Acrobot-v1 (b) CartPole-v1 (c) LunarLander-v2
Figure: Continuous Control experiments
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(a) HalfCheetah-v2 (b) Ant-v2 (c) Pong
Figure: Offline IL experiments
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Exploration in Deep Imitation Learning

o ILARL made clear the need of exploration for imitation learning from features.

o Unfortunatly that algorithm is limited to the linear case.

o The reason is that the algorithm uses bonuses in the form b(s,a) = +/¢(s,a)TAg(s,a).

o These bonuses can not be implemented when neural network function representation is needed.

o IL-SOAR [47] proposes a more practical exploration technique based on ensembles.
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IL-SOAR: Imitation Learning with Soft Optimistic Actor cRitic.

o We can see it as a primal dual scheme that alternates between policy and reward updates.
o The policy update leverages a batch of critics.

o Notice that usually SAC [18] adopts only one critic.

o The reason to use multiple critics is to build a confidence region to be used as an exploration bonus.

IL-SOAR

Require: Reward step size o, Expert dataset Dy, Discount factor v, Policy step size 7).
Initialize w1 as uniform distribution over A.
Initialize empty replay buffer,i.e. D° = {}
for k=1 to K do
7F <+ COLLECTTRAJECTORY (7¥)
Add 7% to replay buffer,i.e. DF = D=1 U 7k,
7% < UPDATEREWARD(r* =1, Drp, DF, @)
for {=1to L do
Compute estimator Qif.
end for

QF = OPTIMISTICQ({Q]Z}ZL:I)'
¥ (a|s) = PoLicyUppaTE(n, {Q7 (s,a)} X))
end for
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IL-SOAR in the tabular setting

o IL-SOAR enjoys mathematical guarantees in the tabular setting.

Theorem
~ 4
Let us consider SOAR run in a tabular MDP for K = O (W) iterations and with an expert
2 2 =
dataset of size |Drg| = ISI7|Al log(“;”(;”_G;élog(lsle) . Then, it holds that the policy output by SOAR mx

satisfies <,u, VIE _yrt

Ctrue Ttrue

> < € with probability at least 1 — 56.

o In the case of state only imitation O(e~2) can not be improved.
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IL-SOAR in continuous states and action problems

o For neural networks, we generate the optimistic @ function by:
> Computing the mean value of the estimators {Q(s, az)}f:1 for a certain state action pair.
> Adding the standard deviation.

OpPTIMISTICQ-NN

Require: Replay buffer D, Estimators {Qg}éLzl, maximum standard deviation o.
ilg {Si}zNzl < sample observations from D
2: a; < 7r(si)

3 Q(si,0:5) = T 25:1 Qe(si,ai)

o stdQ(ae,ar) = /2 YL, (@usir00) - Qsiran)
5. std-Q(si, a;) < Clip(std-Q(s;, a;),0,0).

6: Q(si,ai) = Q(si,ai) ar Std—Q(Si,az‘)
7: Return: Q(s;,a;) foralli=1,...,N.
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Experiments with IL-SOAR
o IL-SOAR is a general template.

o It allows to con sistently improve all IL methods based on Soft Actor Critic (SAC).
o Examples are CSIL [48], RKL [32] and ML-IRL [49].

Average Performance Across Environments

CsIL ML-IRL (SA) ML-IRL RKL
c 1.0
=
2os
o
o
o6
®
E
So4
&
©0.2
2
<00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Episode 1le6 Episode le6 Episode le6 Episode le6
---- CSIL(Base) ~ ---- ML-IRL(SA) (Base) ~ ---- ML-IRL (Base) ~ ---- RKL(Base) -~ Expert
—— CSIL+SOAR  —— ML-RL (SA) + SOAR —— ML-IRL + SOAR  —— RKL + SOAR

Figure: Summary of experimental results. Each plot compares the average normalized return across 4 MuJoCo environments
with 16 expert trajectories for a base algorithm and its SOAR-enhanced version. SOAR replaces the single critic in SAC-based
methods with multiple critics to compute an optimistic estimate.
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Is imitating enough ?

o Standard imitation learning o Human imitation learning
> copy the actions performed by the expert > copy the intent of the expert
> no reasoning about outcomes of actions > might take very different actions!

Figure: Robot imitation

Figure: Human imitation
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Inverse reinforcement learning (IRL) [31, 40]

IRL Objective

Find reward function r(,-) : S X A — [—1, 1] that explains the expert’s behavior:

o0
g € argmax E E Yir(st, at)|so ~ p,
mell —0
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Inverse reinforcement learning (IRL) [31, 40]

IRL Objective

Find reward function r(,-) : S X A — [—1, 1] that explains the expert’s behavior:

o0
g € argmax E E Yir(st, at)|so ~ p,
mell

t=0
Namely, it holds that
[e @) oo
E ZVtT(St:atNSON#,WE >E g vir(st,ai)|so ~ p,m| ,Vr € IL
t=0 t=0

Remarks: o Assume the expert is optimizing some reward function rirye.
o The true reward function is unknown; 7 is the optimal policy of the MDP M = (S, A, P, rtrue, 7).
o Unlike BC, IRL uses the MDP structure for the learning from expert demonstration.
o IRL recovers a reward function and avoids the distribution shift issue in BC [2, 51].
o Note that this is a convex feasibility problem: It has different solution challenges.
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The RL and IRL dichotomy

IRL RL
Input Expert Demonstrations | Reward Function
Output Optimal policy Optimal Policy
Reward function

o RL recovers a nearly optimal behavior from reward functions.

o IRL recovers a reward function for which the observed behaviour is optimal and possibly a nearly optimal
behavior from demonstrations by an expert.
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Challenges with inverse reinforcement learning

Theorem (Reward shaping)

An expert policy g optimal in the MDP M with reward r is optimal also in the MDP M with reward function
7 given by
ﬁ(sv a) = T’(S, a) + ’YES,NF)(“S,LZ) [q)(sl)] - @(5)7

where ® : S — R is called potential function.

o Reward function ambiguity; A trivial solution is 7 = 0.
> Solution: Add regularization, restrict reward assumptions

o IRL is computationally expensive if we want to enumerate all polices to form the constraints.

> Solution: Consider a tractable apprenticeship learning formalism

o In practice, we do not observe g but only trajectories from mg.

> Solution: Use sample averages of total returns under 7g
o May be infeasible if the expert’s policy is not optimal.
> Solution: Relax the constraints; add slack variables
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Identifiability in inverse reinforcement learning

o The reward function ambiguity problem can be solved leveraging two experts. The following holds:

Theorem (Theorem 2 in [37])

Consider two Markov decision problems on the same set of states and actions, but with different transition
matrices P, P2 and discount factors v1,~v2. Suppose that we observe two experts acting each in one of these
environments, optimally with respect to the same reward function, in the sense that their policies maximize the
entropy regularized reward in their respective environments. Then, the reward function can be recovered up to
the addition of a constant if and only if

I-mP;, —({I—mP2)
rank =2|S| - 1. (9)
_ 1 (] — 2
1 ,ylPalA\ (I ’YQPa‘_A‘)
Remark: o This result has been stated in [9] under a limited form.

o This stronger statement is a new result.

o ldentifying the reward is important when one needs to predict how the expert would behave
under different dynamics but same reward.
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Summary of imitation learning

Method Reward Access to Interactive Pre-collected
learning | environment | demonstrations | demonstrations
Behavioural Cloning NO NO NO
Online IL NO MAYBE
Inverse RL NO
Adversarial IL MAYBE NO
Non-adversarial IL MAYBE NO

Remarks: o BC avoids interaction with the environment, but can suffer from cascading errors.
o Online IL helps with the cascading errors but requires (expensive) expert queries.
o IRL explains the expert’s behavior but has poor sample complexity and scalability.
o Adversarial IL avoids solving the RL problem repeatedly but is unstable due to adversarial training.

o Non-adversarial IL enjoys stable performance but is hampered by limited theoretical understanding.
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Proof Sketch

o Recall the advantage defined as A™(s,a) = Q7 (s,a) — V™ (s) and notice that EaNfr(,‘S)A*(s,a) =0, Vs.
o We will use also that A% (s,a) < ﬁ if maxs,q|r(s,a)] < 1.

Proof.

> Based on performance difference lemma [25], we have

1

VT VT = T B, a1 A7(5,)
1 T s
= ﬁ [ESNA"E, a,~7rE(-|s)A (Sva‘) - ESN)\WE, aNfr(<|s)A (Saa):l
1 .
< WEmvs 7 (1) — me([s)l1-
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Proof Sketch

o Recall the advantage defined as A™(s,a) = Q7 (s,a) — V™ (s) and notice that EaNfr(,‘S)A*(s,a) =0, Vs.
o We will use also that A% (s,a) < ﬁ if maxs,q|r(s,a)] < 1.

Proof.

> Based on performance difference lemma [25], we have

1

VTE = VT = T BenATE, anme(-ls) AT (3, 0)
1 # #
= ﬁ [ESNA"E, a,~7rE(-|s)A (Sva‘) - ESN)\WE, aNfr(<|s)A (s,a)]
1 .
< WEMME lI17(:ls) — me(:ls)l1-
> MLE guarantee [5] is given by
. log (|II| /o
Eyonme |7 — 7|2y < %.
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Proof Sketch

o Recall the advantage defined as A™(s,a) = Q7 (s,a) — V™ (s) and notice that EaNfr(,‘S)A*(s,a) =0, Vs.
o We will use also that A% (s,a) < ﬁ if maxs,q|r(s,a)] < 1.

Proof.

> Based on performance difference lemma [25], we have

1

VTE = VT = T BenATE, anme(-ls) AT (3, 0)
1 # #
= ﬁ [ESNA"E, a,~7rE(-|s)A (Sva‘) - ESN)\WE, aNfr(<|s)A (s,a)]
1 .
< WEMME lI17(:ls) — me(:ls)l1-
> MLE guarantee [5] is given by
R log (|11} /6)
Eqme [|# = mell 7y < —

> Then the result follows from Jensen's inequality and that |||y = % II1l4-
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* Hoeffding's Lemma [22]

Theorem (Hoeffding's Lemma)
Let X be a random variable such that E(X) = 0 and X € [a,b] almost surely. Then for any s € R, it holds that

s2(b—a)?
]E(eSX) <e (8a>
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Generative adversarial imitation learning (GAIL): A primal dual perspective

o In Maximum Causal Entropy IRL [51], we need to solve an RL problem for every reward update.
o This is a major computation bottleneck.

o We can develop a more efficient method if we use alternating updates.

Derivation: o Let us consider a reward linear in some features, that is 7(s,a) = (¢(s,a), w). o We will
follow the same steps from [20]

GAIL objective

Let h : RISIIAI 5 R be a convex function that serves as reward regularizer. GAIL solves the
following minimax problem:

minmax  Bh(r) +Eq g r(s,@)] B, . ye [1(5,0)] + aBo,amag [~ log m(als)]

o Use Fenchel conjugation, we can obtain

Tym T
max —h* (@ A F - ML)+ 0B aanr [~ log m(als))].

o Important result: If f is «a strongly convex then the convex conjugate f* is 1/a-smooth [6].
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An important choice for the regularizer h.

o Choosing h as
h('l‘) — { ES,QN)\ZE [9(7‘(57 a))] ) if T(S, a) < 07

00, otherwise.
with g(z) = —z — log(1 — €%).
o The Fenchel conjugate of h is given by:

h*()‘ZE - Az) = Drg[ax 1] Es an ]} [lOgD(S a)} + ES a,\,)\‘”E [log(l - (57 a))]

that is widely known as the (vanilla) GAN loss.

o Therefore, we can learn a policy from demonstrations solving the following saddle point problem:

min max Eg qoan [log D(s,a)] +E

min max aare 108(1 = D(s,0))] = A, qrong [ g n(als)]
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Generative Adversarial Network (GANs)

o GAN [17] is framed as a min-max game between a generator and a discriminator.

Dual variable

—— sample
Dataset B

Generator sample

o GAN: (= minimizing the Jensen-Shannon divergence)

Noise vector

rgin max Ex~pyas (108 Do (x)] + E= [log(l — Dg(G¢(z)))]
¢ Do

o Wasserstein GAN: (= minimizing the Wasserstein divergence)

min max  Bop, [fo(2)] = B: [f5(Go(2))]
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Generative Adversarial Networks (GANs)
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Generative Adversarial Imitation Learning (GAIL)

o GAIL [21] aims to solve the min-max game for learning the policy given an expert policy 7g.

Remarks: o

]

s,aN)\“

meinm;xx Es ™o [log(D¢(s, a))] +E g [log(l — D¢(s,a))] — aH(mg).

We assume a differentiable parametrized policy mg.
The discriminator tries to separate the data generated from learned policy from expert data.

Equivalent to minimize the Jensen-Shannon divergence between the state-action distributions of
the expert policy and the learned policy.

Unlike Max-Entropy IRL, does not require expensive RL subrountines to learn the reward.

GAIL can be adapted to use features only datasets [44].
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Numerical performance [21]
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Figure: Performance of learned policies among GAIL, Behavior Cloning (BC), Feature Expectation Matching (FEM), and
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Feature-based reward
Theorem
Assumption Let ¢ : S x A — R be a feature mapping. Assume linear true reward function, i.e.,

Terue € {r | r(s,a) = w' ¢(s,a), where w € R* and lw|ly < 1}.

o The expected total reward when 7(s,a) = w ' ¢(s,a) can then be expressed as:

oo (oo}

Jr(m) =E Z”/tr(st,at)w =E thwTd)(st,at)ﬂ =w'E Z'ytd)(st,at)

t=0 t=0 t=0

.
7| =wT py(m),

where pg(7) € R? is the feature expectation vector of policy 7.

Goal

Find w € R? such that
pr¢(WE) > pr¢(ﬂ), vr e II.
~———

=Juw (mE) =Ju ()
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Feature-based reward (cont’d)

Goal
Find w € R? such that

pr¢(7rE) > pr¢(w), vr e IL.
~———

=Juw (7E) =Joy ()
2
Remark: o Note that py(m) can be readily estimated from sampled trajectories.
dlog(+
o By Hoeffding's Lemma [22] (see 14) we need O (%) expert trajectories to have an

e-small £oo-error with probability at least 1 — §.
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Max margin IRL [Ratliff et al., 2006][36]

Standard max-margin formulation [43]
We want to maximize the margin, i.e the separation distance between the expert and other policies, this yields

- 2
min |jwl|3
w

st. w! pg(me) > pr¢(7r)+1, for all 7

Structured prediction max margin

We add flexibility by specifying the margin as a function of the policies, i.e., m(wg, 7), this yields
: 2
min [Jwll;
w

s.t. pr¢(wE) > pr¢(ﬂ)+m(7rE,7T), for all 7

Remarks: © We want to make Jy, (7g) larger than any other Jy, () by a margin m(mg, ).
o Margin should be larger for policies that are very different from 7g.

o Example: m(mg, ) =number of states in which 7g was observed and in which 7 and =g disagree.

ILHE]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 24



Max margin IRL [Ratliff et al., 2006][36] (cont’)

Structured prediction max-margin with slack variables
We relax the problem by allowing the constraints to be violated by introducing slack variables £ > 0, this yields

min [|w||3 + C¢
w,§

P

s.t. pr¢(7rE) > pr¢(w)+m(7rE,7r) —¢&, forallm

Remarks: o The slack variable £ > 0 are introduced to allow the constraints to be violated.
o Resolved: access to 7g, reward ambiguity, expert suboptimality.
o One challenge remains: very large number of constraints.

o Assuming access to an RL subroutine, it can be solved, e.g., by constraint generation.
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